Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 871326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652099

RESUMO

Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFß in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).

2.
Immunol Cell Biol ; 98(2): 138-151, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837284

RESUMO

Macrophages (Mϕ) have been reported to downmodulate the cytotoxicity of natural killer (NK) cell against solid tumor cells. However, the collaborative role between NK cells and Mϕ remains underappreciated, especially in hematological cancers, such as chronic myeloid leukemia (CML). We observed a higher ratio of innate immune cells (Mϕ and NK) to adaptive immune cells (T and B cells) in CML bone marrow aspirates, prompting us to investigate the roles of NK and Mϕ in CML. Using coculture models simulating the tumor inflammatory environment, we observed that Mϕ protects CML from NK attack only when CML was itself mycoplasma-infected and under chronic infection-inflammation condition. We found that the Mϕ-protective effect on CML was associated with the maintenance of CD16 level on the NK cell membrane. Although the NK membrane CD16 (mCD16) was actively shed in Mϕ + NK + CML trioculture, the NK mCD16 level was maintained, and this was independent of the modulation of sheddase by tissue inhibitor of metalloproteinase 1 or inhibitory cytokine transforming growth factor beta. Instead, we found that this process of NK mCD16 maintenance was conferred by Mϕ in a contact-dependent manner. We propose a new perspective on anti-CML strategy through abrogating Mϕ-mediated retention of NK surface CD16.


Assuntos
Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Macrófagos/imunologia , Mycoplasma/imunologia , Imunidade Adaptativa , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-8/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/microbiologia , Macrófagos/microbiologia , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Fator de Crescimento Transformador beta/metabolismo
3.
PLoS Genet ; 15(4): e1008077, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969964

RESUMO

The role of ribosomal protein S6 (rpS6) phosphorylation in mRNA translation remains poorly understood. Here, we reveal a potential role in modulating the translation rate of chemokine (C-X-C motif) ligand 8 (CXCL8 or Interleukin 8, IL8). We observed that more CXCL8 protein was being secreted from less CXCL8 mRNA in primary macrophages and macrophage-like HL-60 cells relative to other cell types. This correlated with an increase in CXCL8 polyribosome association, suggesting an increase in the rate of CXCL8 translation in macrophages. The cell type-specific expression levels were replicated by a CXCL8- UTR-reporter (Nanoluc reporter flanked by the 5' and 3' UTR of CXCL8). Mutations of the CXCL8-UTR-reporter revealed that cell type-specific expression required: 1) a 3' UTR of at least three hundred bases; and 2) an AU base content that exceeds fifty percent in the first hundred bases of the 3' UTR immediately after the stop codon, which we dub AU-rich proximal UTR sequences (APS). The 5' UTR of CXCL8 enhanced expression at the protein level and conferred cell type-specific expression when paired with a 3' UTR. A search for other APS-positive mRNAs uncovered TNF alpha induced protein 6 (TNFAIP6), another mRNA that was translationally upregulated in macrophages. The elevated translation of APS-positive mRNAs in macrophages coincided with elevated rpS6 S235/236 phosphorylation. Both were attenuated by the ERK1/2 signaling inhibitors, U0126 and AZD6244. In A549 cells, rpS6 S235/236 phosphorylation was induced by TAK1, Akt or PKA signaling. This enhanced the translation of the CXCL8-UTR-reporters. Thus, we propose that the induction of rpS6 S235/236 phosphorylation enhances the translation of mRNAs that contain APS motifs, such as CXCL8 and TNFAIP6. This may contribute to the role of macrophages as the primary producer of CXCL8, a cytokine that is essential for immune cell recruitment and activation.


Assuntos
Interleucina-8/biossíntese , Interleucina-8/genética , Proteína S6 Ribossômica/metabolismo , Células A549 , Elementos Ricos em Adenilato e Uridilato , Sequência de Bases , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HL-60 , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Mutagênese , Fosforilação , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína S6 Ribossômica/química , Proteína S6 Ribossômica/genética , Regiões não Traduzidas
4.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30322895

RESUMO

The transcription factor, T-bet, regulates type 1 inflammatory responses against a range of infections. Here, we demonstrate a previously unaddressed role of T-bet, to influenza virus and bacterial superinfection. Interestingly, we found that T-bet deficiency did not adversely affect the efficacy of viral clearance or recovery compared to wild-type hosts. Instead, increased infiltration of neutrophils and production of Th17 cytokines (IL-17 and IL-22), in lungs of influenza virus-infected T-bet-/- mice, were correlated with survival advantage against subsequent infection by Streptococcus pneumoniae Neutralization of IL-17, but not IL-22, in T-bet-/- mice increased pulmonary bacterial load, concomitant with decreased neutrophil infiltration and reduced survival of T-bet-/- mice. IL-17 production by CD8+, CD4+ and γδ T cell types was identified to contribute to this protection against bacterial superinfection. We further showed that neutrophil depletion in T-bet-/- lungs increased pulmonary bacterial burden. These results thus indicate that despite the loss of T-bet, immune defences required for influenza viral clearance are fully functional, which in turn enhances protective type 17 immune responses against lethal bacterial superinfections.


Assuntos
Infecções por Orthomyxoviridae/mortalidade , Superinfecção/mortalidade , Proteínas com Domínio T/genética , Animais , Coinfecção , Cães , Feminino , Deleção de Genes , Vírus da Influenza A Subtipo H1N1/patogenicidade , Interleucina-17/metabolismo , Interleucinas/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/microbiologia , Infecções Pneumocócicas/complicações , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/mortalidade , Infecções Pneumocócicas/virologia , Streptococcus pneumoniae/patogenicidade , Superinfecção/genética , Superinfecção/microbiologia , Superinfecção/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...